If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+70x=0
a = 40; b = 70; c = 0;
Δ = b2-4ac
Δ = 702-4·40·0
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-70}{2*40}=\frac{-140}{80} =-1+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+70}{2*40}=\frac{0}{80} =0 $
| 6(-9+x)=12 | | 2x-3.1=5x-(51/2) | | 7v+23=12v-22 | | 16+v5=111 | | -10(s+4)=-46 | | x/3+10=15* | | .5x=345 | | 2^(3x)=48 | | (3x+13)=80 | | 5(3y-4)=12-4y | | x/5+15=15 | | X^3-3x^2+21x-13=0 | | 4(-3+3x)=-12 | | 10y-3y=77 | | 8x-10=54;x= | | -10+x=x+8 | | p²-10p=-21 | | 546=6b | | -4w=5w-9 | | -3=3x-30 | | -27p=-837 | | 33/2+3y-5=7y/10+15 | | 858=g-106 | | 46=2-8*w-3w | | 4m=700 | | 8u=9u-6 | | z+10/8=4 | | m-737=-152 | | x+.2x=268 | | 6-9u=8u | | 32u=160 | | P=0.0021x^2-0.286x+16.28 |